• Àλ縻
  • Á¶Á÷Á¶Á÷
  • ÇÁ·Î±×·¥ÇÁ·Î±×·¥
  • µî·Ï/Âü°¡¾È³»µî·Ï/µî·Ï/Âü°¡¾È³»
  • °Ô½ÃÆÇ °Ô½ÃÆÇ
  • Past KRnet
  • ¼¼ºÎÇÁ·Î±×·¥

    ¼¼ºÎÇÁ·Î±×·¥

     

    43.   45
    Track > Session : >
    ¹ßÇ¥Á¦¸ñ : [F2-2] Denoising Quantum State Diffusion Models
    ¹ßÇ¥ÀÚ : ½ÉÁÖ¿ë (¹Ú»ç/°í·Á´ë)
    °­¿¬¿ä¾à : º» °­¿¬¿¡¼­´Â ¾çÀÚ ½Ã½ºÅÛ¿¡¼­ ¹ß»ýÇÏ´Â ³ëÀÌÁî ´ëÇÑ ±âº» ÀÌ·Ð ¼³¸í°ú ¹è°æÀ» ¸ÕÀú ¼Ò°³Çϰí, ¾çÀÚ ½Ã½ºÅÛÀÇ ³ëÀÌÁî ȯ°æ ÇÏ¿¡¼­ÀÇ »óÅ ÁøÈ­¸¦ È¿À²ÀûÀ¸·Î ¸ðµ¨¸µÇϰí Á¤Á¦(Denoising)ÇÏ´Â ¹æ¹ýÀ¸·Î¼­ Quantum State Diffusion(QSD) ¸ðµ¨¿¡ ±â¹ÝÇÑ »õ·Î¿î Á¢±Ù ¹æ½ÄÀ» ¼Ò°³ÇÑ´Ù. ¾çÀÚ ½Ã½ºÅÛÀº ȯ°æ°úÀÇ »óÈ£ÀÛ¿ëÀ» ÅëÇØ...more
    Track > Session : >
    ¹ßÇ¥Á¦¸ñ : [F2-3] Recent Advances in Optimizing Quantum Data Embedding for Machine Learning...
    ¹ßÇ¥ÀÚ : ¹Ú°æ´ö (ºÎ±³¼ö/¿¬¼¼´ë)
    °­¿¬¿ä¾à : Recent Advances in Optimizing Quantum Data Embedding for Machine Learningmore
    Track > Session : >
    ¹ßÇ¥Á¦¸ñ : [F2-4] ¾çÀÚ ÄÄÇ»ÆÃ ¾Ë°í¸®Áò ¿¬±¸°³¹ß µ¿Çâ
    ¹ßÇ¥ÀÚ : ¹èÀº¿Á (¼±ÀÓ/ETRI)
    °­¿¬¿ä¾à : Çö´ë ¾ÏÈ£ ü°è¿Í ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ´Â ¼ÒÀμöºÐÇØ¿Í °°Àº ¹®Á¦¸¦ °íÀü ÄÄÇ»Åͺ¸´Ù ºü¸£°Ô ÇØ°áÇÒ ¼ö ÀÖ´Â ¾çÀÚ ¾Ë°í¸®ÁòÀÇ µîÀå ÀÌÈÄ, °íÀü ÄÄÇ»ÅͰ¡ °¡Áø °è»ê ¼º´ÉÀÇ ÇѰ踦 ±Øº¹ÇϰíÀÚ ÇÏ´Â ´Ù¾çÇÑ ¾çÀÚ ¾Ë°í¸®Áò¿¡ ´ëÇÑ ¿¬±¸°¡ Ȱ¹ßÈ÷ ÁøÇàµÇ°í ÀÖ´Ù. º» ¹ßÇ¥¿¡¼­´Â Á¦ÇÑµÈ Å¥ºñÆ® ¼ö¿Í ÀâÀ½ ¹®Á¦·Î ¿ÏÀüÇÑ ¿À·ù º¸Á¤...more
    Track > Session : >
    ¹ßÇ¥Á¦¸ñ : [F3-2] °èÃþÇü ¾çÀÚ¾ÏÈ£Åë½Å ³×Æ®¿öÅ© ÀÚ¿øÃÖÀûÈ­ ¿¬±¸
    ¹ßÇ¥ÀÚ : ÀÌÂù±Õ (¼±ÀÓ/KISTI)
    °­¿¬¿ä¾à : ¾çÀÚ¾ÏÈ£Åë½Å¸ÁÀº °¢°¢ °íÀ¯ÇÑ ¿ªÇÒÀ» ¼öÇàÇÏ´Â ¾çÀÚ°èÃþ, ۰ü¸®°èÃþ, ¼­ºñ½º°èÃþÀ¸·Î ±¸¼ºµÈ °èÃþÇü ±¸Á¶·Î Á¤ÀǵǸç, °¢ °èÃþ¿¡¼­´Â Èñ¼ÒÇÑ ÀÚ¿øÀ» Ȱ¿ëÇÏ¿© ¾çÀÚ¾ÏÈ£Åë½Å ¼­ºñ½º¸¦ ´Þ¼ºÇÑ´Ù. º» ¹ßÇ¥¿¡¼­´Â °èÃþÇü ¾çÀÚ¾ÏÈ£Åë½Å¸Á ±¸Á¶¿¡¼­ ÀÚ¿ø°ü¸®, ÀÚ¿øÈ¿À²È­ ¾Ë°í¸®Áò ¹× ÀÚ¿øÃÖÀûÈ­ ±â¼ú¿¡ ´ëÇØ ³íÀÇÇÑ´Ù.more
    Track > Session : >
    ¹ßÇ¥Á¦¸ñ : [G1-1] On Naver Place Service AI
    ¹ßÇ¥ÀÚ : ÁÖÀ±»ó (¸®´õ/NAVER)
    °­¿¬¿ä¾à : ³×À̹ö Ç÷¹À̽º ÇÁ·Î´öÆ®´Â Áö¿ª °Ë»ö, Áöµµ, ¿¹¾à, Ç÷¹À̽º, ½º¸¶Æ® Ç÷¹À̽º, ¿©Çà, È£ÅÚ, Ç×°ø µî ´Ù¾çÇÑ ·ÎÄà µµ¸ÞÀÎÀÇ ¼­ºñ½º¸¦ °³¹ßÇÏ°í ¿î¿µÇÏ´Â Á¶Á÷ÀÔ´Ï´Ù. Á¦°¡ ¼ÓÇÑ Ç÷¹À̽º AI ÆÀÀº ÀÌ·¯ÇÑ ¼­ºñ½ºÀÇ Ç°ÁúÀ» Çâ»ó½Ã۱â À§ÇØ ´Ù¾çÇÑ AI ±â¼úÀ» °³¹ßÇÏ°í ½ÇÁ¦ ¼­ºñ½º¿¡ Àû¿ëÇØ ³ª°¡°í ÀÖ½À´Ï´Ù. À̹ø °­¿¬¿¡...more
    Track > Session : >
    ¹ßÇ¥Á¦¸ñ : [G1-3] Exploring AI Computing Systems: Perspectives on TCO and SW Ecosystem
    ¹ßÇ¥ÀÚ : ±Ç¼¼Áß (¸®´õ/NAVER Cloud)
    °­¿¬¿ä¾à : °­ ¿¬ ¿ä ¾à (¼­¼ú½Ä ±âÀç) Transformer ¾ÆÅ°ÅØÃÄ¿¡ ±âÃÊÇÑ Large Language ModelÀ» ÀÌ¿ëÇÑ AI ¼­ºñ½º°¡ º»°Ý È®»êµÊ¿¡ µû¶ó, ¿©·¯ ºñ¿ëÀûÀÎ ¿ì·Á°¡ Ä¿Áö°í ÀÖÀ¸¸ç, À̸¦ È¿À²ÀûÀ¸·Î ½ÇÇàÇϱâ À§ÇÑ AI Computing System ȤÀº AI ¹ÝµµÃ¼¿¡ ´ëÇÑ °ü½ÉÀÌ Ä¿Áö°í ÀÖ´Ù. º» °­¿¬¿¡¼­´Â ³×À̹öŬ¶ó¿ìµå¿¡¼­ ´Ù¾çÇÑ ¼Ö·ç¼ÇÀ» Æò...more
    Track > Session : >
    ¹ßÇ¥Á¦¸ñ : [G2-1] Emerging Trends in Humanoid Robotics: From Hardware to Software Perspecti...
    ¹ßÇ¥ÀÚ : (Á¶±³¼ö/°í·Á´ë)
    °­¿¬¿ä¾à : Recent advancements in large language models (LLMs) and vision-language models (VLMs) are reshaping the landscape of human-centered robotics. This presentation explores how these technologies, combined with the rapid progress in humanoid robot hardware, can enhance human-robot interaction and enable...more
    Track > Session : >
    ¹ßÇ¥Á¦¸ñ : [G3-1] Machine Learning meets Scientific Computing
    ¹ßÇ¥ÀÚ : È«¿µÁØ (ºÎ±³¼ö/¼­¿ï´ë)
    °­¿¬¿ä¾à : In recent years, advances in computational power and data availability have propelled machine learning (ML) to the forefront of scientific computing, complementing and enhancing traditional methods. This lecture explores the integration of ML with numerical methods for multi-scale problems, highligh...more
    Track > Session : >
    ¹ßÇ¥Á¦¸ñ : [G3-2] Scientific Machine Learning: From Theory to Practice in Science and Engin...
    ¹ßÇ¥ÀÚ : Ãֹμ® (Á¶±³¼ö/POSTECH)
    °­¿¬¿ä¾à : °úÇбâ°èÇнÀ (Scientific Machine Learning)Àº º¹ÀâÇÑ ¹°¸® ½Ã½ºÅÛÀ» È¿°úÀûÀ¸·Î ¸ðµ¨¸µÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¿¬±¸ ÆÐ·¯´ÙÀÓÀ¸·Î, ÃÖ±Ù °è»ê°úÇÐ ¹× °øÇÐ Àü¹Ý¿¡¼­ ¸¹Àº ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. º» °­¿¬¿¡¼­´Â PINN°ú operator learning µî °úÇбâ°èÇнÀÀÇ ÀÌ·ÐÀû ±â¹ÝÀ» ¼Ò°³Çϰí, ÇнÀ È¿À²¼º°ú ÀϹÝÈ­ ¼º´É Çâ»óÀ»...more
    Track > Session : >
    ¹ßÇ¥Á¦¸ñ : [G3-3] Fast and efficient physics-informed neural representations
    ¹ßÇ¥ÀÚ : ¹ÚÀºº´ (Á¶±³¼ö/¿¬¼¼´ë)
    °­¿¬¿ä¾à : ÃÖ±Ù µ¥ÀÌÅÍ ±â¹Ý ¹æ¹ý·ÐÀÇ ¹ßÀüÀº Æí¹ÌºÐ ¹æÁ¤½Ä(PDE) ÇØ¼® ±â¹ý¿¡ Çõ½ÅÀ» °¡Á®¿ÔÀ¸¸ç, ±×Áß¿¡¼­µµ ¹°¸® ±â¹Ý ½Å°æ¸Á(PINN)ÀÌ À¯¸ÁÇÑ Á¢±Ù ¹æ½ÄÀ¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ±×·¯³ª PINNÀº ¼ö·Å ¼Óµµ°¡ ´À¸®°í Á¤È®µµ°¡ Á¦ÇÑÀûÀ̸ç, ƯÈ÷ °íÂ÷¿ø ¹× º¹ÀâÇÑ PDE ¹®Á¦¿¡¼­ °è»ê ºñ¿ëÀÌ Å©°Ô Áõ°¡ÇÏ´Â ÇѰ踦 °¡Áý´Ï´Ù. º» ¹ßÇ¥¿¡...more
     01 02 03 04 05


    TOP