facebook
·Î±×ÀÎ
Àλ縻
Á¶Á÷
Á¶Á÷
ÁÖ°ü±â°ü
À§¿øÈ¸ ±¸¼º
ÇÁ·Î±×·¥
ÇÁ·Î±×·¥
ÇÁ·Î±×·¥À϶÷
¼¼ºÎÇÁ·Î±×·¥
µî·Ï/Âü°¡¾È³»
µî·Ï/µî·Ï/Âü°¡¾È³»
»çÀüµî·Ï
µî·ÏÈ®ÀÎ
Âü°¡ ¾È³»
°Ô½ÃÆÇ
°Ô½ÃÆÇ
°øÁö»çÇ×
ÀÚ·á½Ç
Photo Gallery
Past KRnet
¼¼ºÎÇÁ·Î±×·¥
ÇÁ·Î±×·¥
¼¼ºÎÇÁ·Î±×·¥
¼¼ºÎÇÁ·Î±×·¥
43
.
4
5
---- ¼±Åà ----
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
---- ¼±Åà ----
---- ¼±Åà ----
Track
>
Session :
>
¹ßÇ¥Á¦¸ñ :
[F2-2] Denoising Quantum State Diffusion Models
¹ßÇ¥ÀÚ :
½ÉÁÖ¿ë (¹Ú»ç/°í·Á´ë)
°¿¬¿ä¾à :
º» °¿¬¿¡¼´Â ¾çÀÚ ½Ã½ºÅÛ¿¡¼ ¹ß»ýÇÏ´Â ³ëÀÌÁî ´ëÇÑ ±âº» ÀÌ·Ð ¼³¸í°ú ¹è°æÀ» ¸ÕÀú ¼Ò°³Çϰí, ¾çÀÚ ½Ã½ºÅÛÀÇ ³ëÀÌÁî ȯ°æ ÇÏ¿¡¼ÀÇ »óÅ ÁøÈ¸¦ È¿À²ÀûÀ¸·Î ¸ðµ¨¸µÇϰí Á¤Á¦(Denoising)ÇÏ´Â ¹æ¹ýÀ¸·Î¼ Quantum State Diffusion(QSD) ¸ðµ¨¿¡ ±â¹ÝÇÑ »õ·Î¿î Á¢±Ù ¹æ½ÄÀ» ¼Ò°³ÇÑ´Ù. ¾çÀÚ ½Ã½ºÅÛÀº ȯ°æ°úÀÇ »óÈ£ÀÛ¿ëÀ» ÅëÇØ...more
Track
>
Session :
>
¹ßÇ¥Á¦¸ñ :
[F2-3] Recent Advances in Optimizing Quantum Data Embedding for Machine Learning...
¹ßÇ¥ÀÚ :
¹Ú°æ´ö (ºÎ±³¼ö/¿¬¼¼´ë)
°¿¬¿ä¾à :
Recent Advances in Optimizing Quantum Data Embedding for Machine Learningmore
Track
>
Session :
>
¹ßÇ¥Á¦¸ñ :
[F2-4] ¾çÀÚ ÄÄÇ»ÆÃ ¾Ë°í¸®Áò ¿¬±¸°³¹ß µ¿Çâ
¹ßÇ¥ÀÚ :
¹èÀº¿Á (¼±ÀÓ/ETRI)
°¿¬¿ä¾à :
Çö´ë ¾ÏÈ£ ü°è¿Í ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ´Â ¼ÒÀμöºÐÇØ¿Í °°Àº ¹®Á¦¸¦ °íÀü ÄÄÇ»Åͺ¸´Ù ºü¸£°Ô ÇØ°áÇÒ ¼ö ÀÖ´Â ¾çÀÚ ¾Ë°í¸®ÁòÀÇ µîÀå ÀÌÈÄ, °íÀü ÄÄÇ»ÅͰ¡ °¡Áø °è»ê ¼º´ÉÀÇ ÇѰ踦 ±Øº¹ÇϰíÀÚ ÇÏ´Â ´Ù¾çÇÑ ¾çÀÚ ¾Ë°í¸®Áò¿¡ ´ëÇÑ ¿¬±¸°¡ Ȱ¹ßÈ÷ ÁøÇàµÇ°í ÀÖ´Ù. º» ¹ßÇ¥¿¡¼´Â Á¦ÇÑµÈ Å¥ºñÆ® ¼ö¿Í ÀâÀ½ ¹®Á¦·Î ¿ÏÀüÇÑ ¿À·ù º¸Á¤...more
Track
>
Session :
>
¹ßÇ¥Á¦¸ñ :
[F3-2] °èÃþÇü ¾çÀÚ¾ÏÈ£Åë½Å ³×Æ®¿öÅ© ÀÚ¿øÃÖÀûÈ ¿¬±¸
¹ßÇ¥ÀÚ :
ÀÌÂù±Õ (¼±ÀÓ/KISTI)
°¿¬¿ä¾à :
¾çÀÚ¾ÏÈ£Åë½Å¸ÁÀº °¢°¢ °íÀ¯ÇÑ ¿ªÇÒÀ» ¼öÇàÇÏ´Â ¾çÀÚ°èÃþ, ۰ü¸®°èÃþ, ¼ºñ½º°èÃþÀ¸·Î ±¸¼ºµÈ °èÃþÇü ±¸Á¶·Î Á¤ÀǵǸç, °¢ °èÃþ¿¡¼´Â Èñ¼ÒÇÑ ÀÚ¿øÀ» Ȱ¿ëÇÏ¿© ¾çÀÚ¾ÏÈ£Åë½Å ¼ºñ½º¸¦ ´Þ¼ºÇÑ´Ù. º» ¹ßÇ¥¿¡¼´Â °èÃþÇü ¾çÀÚ¾ÏÈ£Åë½Å¸Á ±¸Á¶¿¡¼ ÀÚ¿ø°ü¸®, ÀÚ¿øÈ¿À²È ¾Ë°í¸®Áò ¹× ÀÚ¿øÃÖÀûÈ ±â¼ú¿¡ ´ëÇØ ³íÀÇÇÑ´Ù.more
Track
>
Session :
>
¹ßÇ¥Á¦¸ñ :
[G1-1] On Naver Place Service AI
¹ßÇ¥ÀÚ :
ÁÖÀ±»ó (¸®´õ/NAVER)
°¿¬¿ä¾à :
³×À̹ö Ç÷¹À̽º ÇÁ·Î´öÆ®´Â Áö¿ª °Ë»ö, Áöµµ, ¿¹¾à, Ç÷¹À̽º, ½º¸¶Æ® Ç÷¹À̽º, ¿©Çà, È£ÅÚ, Ç×°ø µî ´Ù¾çÇÑ ·ÎÄà µµ¸ÞÀÎÀÇ ¼ºñ½º¸¦ °³¹ßÇÏ°í ¿î¿µÇÏ´Â Á¶Á÷ÀÔ´Ï´Ù. Á¦°¡ ¼ÓÇÑ Ç÷¹À̽º AI ÆÀÀº ÀÌ·¯ÇÑ ¼ºñ½ºÀÇ Ç°ÁúÀ» Çâ»ó½Ã۱â À§ÇØ ´Ù¾çÇÑ AI ±â¼úÀ» °³¹ßÇÏ°í ½ÇÁ¦ ¼ºñ½º¿¡ Àû¿ëÇØ ³ª°¡°í ÀÖ½À´Ï´Ù. À̹ø °¿¬¿¡...more
Track
>
Session :
>
¹ßÇ¥Á¦¸ñ :
[G1-3] Exploring AI Computing Systems: Perspectives on TCO and SW Ecosystem
¹ßÇ¥ÀÚ :
±Ç¼¼Áß (¸®´õ/NAVER Cloud)
°¿¬¿ä¾à :
° ¿¬ ¿ä ¾à (¼¼ú½Ä ±âÀç) Transformer ¾ÆÅ°ÅØÃÄ¿¡ ±âÃÊÇÑ Large Language ModelÀ» ÀÌ¿ëÇÑ AI ¼ºñ½º°¡ º»°Ý È®»êµÊ¿¡ µû¶ó, ¿©·¯ ºñ¿ëÀûÀÎ ¿ì·Á°¡ Ä¿Áö°í ÀÖÀ¸¸ç, À̸¦ È¿À²ÀûÀ¸·Î ½ÇÇàÇϱâ À§ÇÑ AI Computing System ȤÀº AI ¹ÝµµÃ¼¿¡ ´ëÇÑ °ü½ÉÀÌ Ä¿Áö°í ÀÖ´Ù. º» °¿¬¿¡¼´Â ³×À̹öŬ¶ó¿ìµå¿¡¼ ´Ù¾çÇÑ ¼Ö·ç¼ÇÀ» Æò...more
Track
>
Session :
>
¹ßÇ¥Á¦¸ñ :
[G2-1] Emerging Trends in Humanoid Robotics: From Hardware to Software Perspecti...
¹ßÇ¥ÀÚ :
(Á¶±³¼ö/°í·Á´ë)
°¿¬¿ä¾à :
Recent advancements in large language models (LLMs) and vision-language models (VLMs) are reshaping the landscape of human-centered robotics. This presentation explores how these technologies, combined with the rapid progress in humanoid robot hardware, can enhance human-robot interaction and enable...more
Track
>
Session :
>
¹ßÇ¥Á¦¸ñ :
[G3-1] Machine Learning meets Scientific Computing
¹ßÇ¥ÀÚ :
È«¿µÁØ (ºÎ±³¼ö/¼¿ï´ë)
°¿¬¿ä¾à :
In recent years, advances in computational power and data availability have propelled machine learning (ML) to the forefront of scientific computing, complementing and enhancing traditional methods. This lecture explores the integration of ML with numerical methods for multi-scale problems, highligh...more
Track
>
Session :
>
¹ßÇ¥Á¦¸ñ :
[G3-2] Scientific Machine Learning: From Theory to Practice in Science and Engin...
¹ßÇ¥ÀÚ :
Ãֹμ® (Á¶±³¼ö/POSTECH)
°¿¬¿ä¾à :
°úÇбâ°èÇнÀ (Scientific Machine Learning)Àº º¹ÀâÇÑ ¹°¸® ½Ã½ºÅÛÀ» È¿°úÀûÀ¸·Î ¸ðµ¨¸µÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¿¬±¸ ÆÐ·¯´ÙÀÓÀ¸·Î, ÃÖ±Ù °è»ê°úÇÐ ¹× °øÇÐ Àü¹Ý¿¡¼ ¸¹Àº ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. º» °¿¬¿¡¼´Â PINN°ú operator learning µî °úÇбâ°èÇнÀÀÇ ÀÌ·ÐÀû ±â¹ÝÀ» ¼Ò°³Çϰí, ÇнÀ È¿À²¼º°ú ÀϹÝÈ ¼º´É Çâ»óÀ»...more
Track
>
Session :
>
¹ßÇ¥Á¦¸ñ :
[G3-3] Fast and efficient physics-informed neural representations
¹ßÇ¥ÀÚ :
¹ÚÀºº´ (Á¶±³¼ö/¿¬¼¼´ë)
°¿¬¿ä¾à :
ÃÖ±Ù µ¥ÀÌÅÍ ±â¹Ý ¹æ¹ý·ÐÀÇ ¹ßÀüÀº Æí¹ÌºÐ ¹æÁ¤½Ä(PDE) ÇØ¼® ±â¹ý¿¡ Çõ½ÅÀ» °¡Á®¿ÔÀ¸¸ç, ±×Áß¿¡¼µµ ¹°¸® ±â¹Ý ½Å°æ¸Á(PINN)ÀÌ À¯¸ÁÇÑ Á¢±Ù ¹æ½ÄÀ¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ±×·¯³ª PINNÀº ¼ö·Å ¼Óµµ°¡ ´À¸®°í Á¤È®µµ°¡ Á¦ÇÑÀûÀ̸ç, ƯÈ÷ °íÂ÷¿ø ¹× º¹ÀâÇÑ PDE ¹®Á¦¿¡¼ °è»ê ºñ¿ëÀÌ Å©°Ô Áõ°¡ÇÏ´Â ÇѰ踦 °¡Áý´Ï´Ù. º» ¹ßÇ¥¿¡...more
01
02
03
04
05
¹ßÇ¥Á¦¸ñ
°¿¬¿ä¾à
¹ßÇ¥ÀÚ¸í
TOP